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CHARGED PARTICLE OPTICS WITHOUT DETAILED FIELD MAPS 

David C. Carey 
Fermi National Accelerator Laboratory* 

P.O. Box 500, Batavia, Illinois 60510 

ABSTRACT 

For the initial design of a beam line or charged particle optical system, it is 
both useful and convenient to be able to describe the components in terms of 
a small number of parameters. These parameters are used in a calculation of a 
transfer map which represents the effect of the beam line on a particle trajectory. 
The transfer map is often expressed as some kind of series expansion A calculation 
to first order requires the smallest number of descriptive parameters. Extension 
of the calculation to higher orders requires a greater number of parameters. 

From our mathematical backgrounds we have come to have certain expecta- 
tions as to the characteristics of a series expansion. These expectations may not 
always be commensurate with the physics of charged particle beam lines. The 
reconciliation of these expectations will be discussed. 

The example used will be the program TRANSPORT and its extension to 
third order. The third-order expansion may represent the inherent limit of the 
series representation without numerical integration. We shall explain why we may 
have reached that limit. 

INTRODUCTION 

The effect of a beam line on the trajectory of a charged particle [I] is often 
described in terms of a transfer map. The transfer map can take the form of a 
multivariable Taylor series expansion [2] of TRANSPORT [3] or the symplectic 
maps of Alex Dragt and his collaborators -41. In most of what follows, the exact 
nature of the map is not important. The details of the ensuing description will be 
described in terms of the multivariable Taylor series formalism, but most of the 
conclusions will be equally valid for other formalisms as well. 

From our introductory courses in calculus that we took as undergraduates 
we came to have cert,ain expectations about series expansions. The application 
of series expansions to charged particle optics gives us additional expectations. 
Finally, the desire that the mathematical formalism should produce useful results 
rounds out the set. -\ short list of the simplest of our expectations might be: 

l the expansion converges rapidly 

l ‘The lower order coefficients should not depend on whether the higher orders 
are calculated 

l The co&cents can be calculated analytically 



The rapid convergence of the series expansion is a mathematically useful char- 
acteristic, since it means that the number of terms that must be calculated is 
relatively small. The use of the reference trajectory for the origin of the expan- 
sion facilitates rapid convergence. The helpful fact is that the origin of the series 
lies within the population of trajectories we wish to follow through the system. If, 
for example, the transformation of trajectories were to be expanded in absolute 
floor coordinates, the series would converge much less rapidly. 

Rapid convergence of the series representation also describes a physical charac- 
teristic of the beam lines that physicists typically want to design. The elimination 
of nonlinearities is the most common use for correcting elements. A typical class 
of nonlinearities would be the chromatic aberrations. Sextupoles and octupoles 
can be used for correcting elements so that, as nearly as possible, all momenta 
can have the same focusing characteristics. 

The invariance of the lower-order coefficients to whether the higher-order terms 
are calculated is a characteristic of expansions that we have come to take for 
granted. In elementary mathematics it is true of Taylor series and of expansions 
in orthogonal polynomials. It is not true of least squares fits. In the following 
discussions, we shall show that it is not necessarily an attainable ideal in charged 
particle optics. 

That the coefficients can be calculated analytically is a fundamental prereq- 
uisite to the concept of transfer maps. If the coefficients have to be calculated 
numerically, then what we are doing is ray tracing and subsequently constructing 
transfer maps from the results of the ray tracing. Such a procedure may be useful 
in some instances. However, it is no longer the usual first step of describing a 
beam line in terms of a small number of parameters and then deriving a transfer 
map directly. It is more of a hybrid approach where the concept of the transfer 
map is used to characterize the effects of ray tracing. 

For purposes of calculation, a charged particle optical system can be broken 
up into sections. These sections can be classified as being of two types: 

1. translationally invariant fields 

2. fringe fields 

Below we shall show how other configurat,ions are possible. We shall argue that 
inclusion of other types of field will violate our basic expectations for series ex- 
pansions. 

Our notation will be such that the two transverse directions are z and y, with 
y being vertical. The longitudinal direction is z if rectilinear and s if curvilinear. 
The complete six-component vector of trajectory coordinates is then: 

(G 2’3 Y> Y’, e, 4 

The prime indicates differentiation with respect t,o s. The longitudinal coordinate 
is neither z nor s because here it represents the difference between the individual 
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Figure 1: The trajectory coordinate system at the entrance to a magnet. 

trajectory and the reference trajectory. The symbol &? represents the longitudinal 
separation, and 6 the fractional momentum difference. The complete vector is 
sometimes denoted by the vector symbol X, and the individual components by 
I;. The coordinate system at the entrance to a magnet is shown in figure 1. 

With these essentials established, we begin our analysis of the different types 
of field region. 

TRANSLATIONALLY INVARIA,UT FIELDS 

Standard Beamline Components 
The interior fields of the standard multipole components are translationally 

invariant along the reference trajectory. These components include the combined 
function bending magnet, the quadrupole, the sextupole, the octupole, and the 
solenoid. For the translationally invariant fields we can add another expectation 
to our list. 

. The transfer matrix should segment longitudinally 

This statement means that we can arbitrarily choose a point on the reference 
trajectory interior to the magnet. The portions of the magnet before and after this 
point constitute two shorter magnets. Transfer maps can be calculated separately 
for these shorter magnets. When combined the two transfer maps should then be 
identical to the transfer map for the entire magnet calculated as a whole. ‘This 
statement wili be true only to the order to which all the maps are calculated. If, 
for example, the transfer maps are all calculated to second order, the result of 
multiplying the two transfer maps will produce terms of third and fourth order. 
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These terms will not be found in the transfer map for the entire magnet considered 
as a whole, unless this transfer map is also calculated to third or fourth order. 

The differential equations of motion of the particle trajectory coordinates take 
the form: 

XI’ + k*z:; = fi (1) 

where f is known as the driving term. The term f contains all the nonlinearities 
in the trajectory coordinates. It can be expanded to third order as: 

fi = C D;jXj + C EijkXJXk + C FijklZj+kXt (2) 
J jk jkf 

These equations are solved by iteration. A solution is first found to the homoge- 
neous equation, where f; is set to zero. Each iteration then raises by one the order 
of the solution. The solution found is substituted into the right side of equation 
(2) and solved again. At a particular stage, the solution takes the form: 

z< = homogeneous solution f s G(t,r)fi(r)& (3) 

The letter G denotes the Green’s function, which is made up out of the solutions 
of the homogeneous equation. 

The integrals can be evaluated analytically if kz and the coefficients D, E, F, 
and their higher-order equivalents are constants. Then, for any order, the terms 
inside the integral become sums and products of terms of lower order. These 
terms are, in turn, made up of solutions Rij to the first-order equation and are 
nothing more than Sums and products of trigonometric and hyperbolic functions. 
These last named functions can be evaluated analytically to give the higher-order 
transfer matrix elements TIjk and ~~jkc. 

The Acceleration Element 
The accelerator element is not entirely translationally invariant. The field is 

translationally invariant, but since the element accelerates, the reference momen- 
tum is not constant. As a result> the wavelengths of the trigonometric and hyper- 
bolic functions representing both the transverse and longitudinal motion change 
continuously as the element is traversed. For many years, the only representation 
of an acceleration element in TRAYSPORT was for a massless particle. This 
made some kind of sense since TRANSPORT was originated at SLAC, which is 
an electron laboratory. The massless matrix element possessed the characteristic 
of longitudinal segmentation, in spite of its simple analytical form. 

When this same formulation was applied to the massive particle, it failed 
miserably. ‘The expressions did not agree at all with the results of numerical 
integration. The formula also did not come close to satisfying the segmentation 
test. 

Fortunately, the mathematics of particle motion with continuously varying 
wavelength is already well developed because of quantum mechanics. The WKB 
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method, applied to the acceleration cavity for massive particles, produces results 
of reasonably high accuracy [5]. S ince the technique is perturbative. the expres- 
sions are not exact. However, they agree with the results of numerical integration 
to approximately the accuracy with which the transfer matrices are printed in 
TRANSPORT. 

Magnet Mispowering and Violations of Midplane Symmetry 
A bending magnet which is mispowered and/or has skew multipoles :61 in its 

field can still be translationally invariant. However, the path along which it is 
translationally invariant may no longer be the path that the reference particle 
would take in passing through the magnet. It is the path the reference particle 
would take if the magnet were correctly powered and the skew multipoles were 
absent. 

It is now important to retain the field expansion about the path along which the 
translational invariance occurs. The integration will also be done along this path. 
Only then can the integrals described in the last section continue to be tractable 
analytically. Otherwise the field expansion will have to be paramaterized as a 
function of distance along the new trajectory. This parameterization will be an 
approximation, possibly to something which already has a known analytic form. 
The integrals will contain terms from this parameterization and possibly have to 
be evaluated numerically. 

We will have lost one of the big advantages of the transfer map formalism. For 
this reason, even the skew dipole must be included in the skew field expansion. 
A combined function bending magnet with a skew dipole component cannot be 
rotated to eliminate that skew dipole component. 

The coefficients D, E, and F, on the right side of equation (3) will have 
contributions from the skew components. The equations of motion will become 
considerably more complicated. Since sums and products of terms are used in 
making up higher-order terms, the number of terms in the expressions will con- 
siderably more than double. Since some of the terms are of first order (the skew 
dipole and quadrupole terms), iteration will continue to alter terms of all orders. 
It is clear that we need some criterion to terminate the iteration 

One criterion is that the matrix elements calculated be only linear in the skew 
fields. This is a reasonable approximation if the skew fields are small. By small we 
mean that the effect of quadratic or higher-order terms in the skew components 
is negligible for whatever purpose the beam line is being used for. 

Smallness is indeed typically a characteristic of skew fields. Skew fields are 
present either through error of fabrication or for steering or correction purposes. 
These reasons all require small fields in well-designed beams. If the inherently 
skew fields need to be large, the beam designer should reconsider the beam con- 
figuration. 

Finally, we should emphasize the difference between a magnet with skew mul- 
tipoles and a rotated midplane-symmetric magnet. A magnet can often be rotated 
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Figure 2: The parallel displacement of the reference trajectory in the fringe field 
of a dipole magnet 

by a large angle. One possible purpose for rotating a set of quadrupoles might be 
to exchange horizontal and vertical phase space. A reason for rotating a dipole 
might be to provide vertical bending. 

The field of such magnets, if analyzed in the external coordinate system, might 
be said to have large skew components. However, such magnets do have a magnet 
midplane about which the held is symmetric. About this midplane the field can 
then be expanded entirely in terms of symmetric multipoles. 

A magnet where skew components are required for the field representation has 
no single plane of symmetry. In a multipole expansion about a reference curve, 
each multipole will have its 
different multipoles will not 
single magnetic midplane. 

own plane of symmetry. 
necessarily coincide and 

However, these planes for 
there will be no necessary 

FRINGE FIELDS 

The Reference Trajectory 
In what is now a classic paper !7], Harald Enge derives the effect of an extended 

fringe field on the reference trajectory and on the first-order transfer matrices. 
His derivation is for a pure dipole field, where the interior of the magnet has no 
quadrupole or higher-order multipole terms. An equivalent sharply-cut-off field 
may be defined where the field integral is the same as for the extended fringe field 
case. The effect of the extended fringe field is to cause a parallel displacement 
of the reference trajectory compared to the case for a sharply cut off field. This 
parallel displacement is illustrated in figure 2. 

The displacement is parallel because the angle by which the trajectory is de- 
flected is proportional to the integral of the magnetic field traversed. Since the 
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magnetic field is independent of the horizontal transverse coordinate the field in- 
tegral does not depend on whether the field ends suddenly or is extended. The 
displacement of the reference trajectory is given by: 

where fl is the pole face rotation angle, CJ is the magnetic gap, and p is the radius 
of curvature of the reference trajectory in the interior field. The integral I, is 
sometimes called a “form factor”. It is given by 

II= m JJ 
2 By” - By 

dt’dz 
-1, -2, g2Bo 

Matsuda et al. consider the case of a transformation through the fringe field 
of a combined-function bending magnet [8]. F or a combined function bending 
magnet, the field strength is dependent on the horizontal transverse coordinate. 
The transverse displacement due to the extended fringe field causes the reference 
trajectory to get into a region where the field strength differs from the value on 
the reference trajectory for the sharply- cut-off field. The angle of deflection is 
then different, and the reference trajectory is not parallel to what it had been in 
the sharply-cut-off case. 

In other words, there is no simple field integral which can be used to determine 
the deflection of the reference trajectory. Matsuda et al define what they call the 
“ideal field boundary for normal incidence.” It is the boundary of a sharply-cut-off 
field that does give the same angular deflection as occurs in t,he reference trajec- 
tory with the extended fringe field. I believe that they have done as well as is 
possible in a difficult situation. However, the inevitable conclusion is that even the 
determination of the physical reference trajectory may require detailed ray tracing. 

Form Factors 
Getting back to Enge’s work, he also derives the first-order transformation 

through an extended fringe field for a purely dipole interior field. In this case, one 
additional form factor is needed. It is given by: 

12 = J 
- B,(Bo ~ By) dz 

-21 sB,” 

It is used in the modification of the vertical focusing strength for an extended 
fringe field. In the case of a sharply-cut-off field, the horizontal and vertical 
focusing strengths of the magnet entrance or exit are equal and opposite. In the 
case of an extended fringe field region they are not. 

As the order of the calculation is increased! the number of form factors neces- 
sarily also increases. For a given order, the number of form factors also increases 
with the detail to which the calculation is done. The level of detail roughly cor- 
responds to the number of times the equations of motion are iterated. We shall 
discuss this at greater length below. 



The form factors, of course, depend on the detailed shape of the fringe field pro- 
file. They can all be derived from a simple field model to give order-of-magnitude 
estimates on the effect of the extension of the fringe field. However, as the or- 
der and accuracy of the calculation are increased the exact values of the form 
factors become more important. Eventually we reach the point where the para- 
materization contains as much information as a detailed field map. The combined 
procedure of evaluating the form factors and transforming trajectories then be- 
comes tantamount to numerical ray tracing. 

Consequences of Maxwell’s Equations 
We have seen that a model of the extended fringe field is required in order to be 

physically realistic. We shall now investigate the requirements on the fringe field 
imposed by the mathematics of the situation. We shall, in this section, discuss 
only the case of the pure dipole field, where the interior field in the magnet is 
uniform 

From Maxwell’s equations we can relate the derivatives of the magnetic field 
components: 

aB, aB, 
az aY 

(7) 

The first term, 2 is evaluated on the magnetic midplane. The field in the 
vertical direction B, is the main bend field. It is the component which, when 
plotted against z, gives the drop off in the field as the magnet is exited. 

The horizontal component of the magnetic field has the effect of vertical fo- 
cusing. The field component B, seems at first to be a longitudinal component. 
However, in this case, the z direction is taken perpendicular to the magnet pole 
face. If the magnet pole face is rotated, then B, will have a component transverse 
to the beam. This component will be proportional to tanfi, where ,D is the angle 
by which the magnet pole face is rotated. 

By symmetry the component B, is zero on the magnetic midplane. The field 
value itself is given by 

as, B, = Ay- 
3B 

dY 
= hy2 

a2 

The deflection per unit length is proportional to the field strength. The total 
deflection is calculated by integrating longitudinally through the fringe field re- 
gion. The derivative with respect to I integrates out and the deflection is simply 
proportional to the difference in field strength B, in the interior and exterior. In 
the first iteration, at least, it does not matter if the field is sharply cut off. 

‘To calculate the secord-order fringe-field transmission characteristics, we need 
to determine the consequences of Maxwell’s equation on the second derivatives of 
the field components: 

fx ~ a*4 
a9 aYz 

(9) 



The longitudinal rate of fall off of the vertical dipole field is now related to 
the horizontal transverse rate of change of the same component. This component 
affects the horizontal focusing of the beam. The change in vertical strength due 
to the second derivative is: 

fYB @B aBy = +y)l$ = +y)‘$ 

Integrating again longitudinally through the fringe field region, we get that the 
angular deflection due to this term is proportional to the difference in the first 
derivative 2 inside and outside the magnet. Since the field is asymptotically 
constant both in the interior and exterior, the first derivative is zero in both 
regions. Hence, in second order a sharply-cut-off field can be used to calculate 
transfer matrix elements. 

In third order, we must consider the field third derivatives. Maxwell’s equa- 
tions give us: 

@B, _ @B, 
a9 w 

(11) 

Here, as in first order! the influence is on the vertical focusing when the pole face 
is rotated. As with the two lower orders, we can integrate the field third derivative 
through the fringe field region to get the difference of two second derivatives. The 
two second derivatives are zero, and the effect on the focusing would seem to 
vanish. 

However, in this case, the order of the partial derivative is so high that its 
effect does not entirely integrate out. In the course of traversing the fringe field 
region, the direction of the reference trajectory changes. This in turn is reflected 
by a change in angle between the field component B, and the velocity vector. The 
combination of these terms gives a contribution which is proportional to the form 
factor 

(12) 

This form factor is not finite in the sharply-cut-off case. In order that the third- 
order matrix elements be finite, the function describing the vertical field corn 
ponent B, must have a finite derivative almost everywhere. A linear fall off of 
the field strength in the fringe field region will produce finite third-order matrix 
elements. 

As the order of the calculation is further increased, additional continuity COII- 
ditions will be required for the higher-order transfer matrix elements to be finite. 
Ultimately the field will need to possess finite derivatives of all orders. The fact 
that the field model must become more refined as the order of the calculation is 
increased means that the lower orders will be affected also. Thus we are in seeming 
violation of one of our basic principles, namely that the lower order coefficients 
should not depend on whether the higher orders are calculated. The only solution 
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Figure 3: Three possible fringe field profiles: (A) A sharply-cut-off field where 
the field st,rength is discontinuous. (B) X linear fall off where the field strength 
is continuous. (C) .A curved profile where the derivative of the tield strength is 
continuous. 

is to use at the outset a field representation which satisfies Maxwell’s equations. 

Relations Among Orders 
There is still another reason why the calculation of a given order may affect 

lower orders. The equations of motion are solved by iteration. In the interior 
field of a magnet. at each iteration the lowest order affected is increased by one. 
Such a mathematical convenience does not hold for the fringe field. Here even the 
reference trajectory is determined by an iterative procedure. 

In order to identify singularities and to better understand the iterative pro- 
cedure. Sagalovsky ‘91 has developed a formalism based on an expansion in the 
quantity t. The quantit,? t is defined as the ratio of the separation y of magnetic 
poles to the interior radius of curvature p of the reference trajectory. The trans- 
verse coordinates are then all normalized to p while the longitudinal coordinate 
is normalized to 9. The normalized coordinates are denoted by a bar over the 
letter, such as i for i. The effect of the iteration procedure is then such that the 
lowest order terms in e that are changed increase by one with each iteration. The 
di&tential equations to be solved for the second-order transfer matrix elements 
are: 

;T.” = ET].j 2 111 

$T,ij = --3Erfr,h7*ij - fZfiij 
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~T3ij = ET*;j 
z 

&Tdij = -cr:Ta$(hT3ij) + fhij 

where 

I-1 = (ltAa)i 

r* = 
A 

(1 t A+ 

A = -;(I +A2)i 

1 
A( 2) = Ertanp - 2sec3,B 

JJ 

2’ 
h( z”‘dz”dz’ 

=1 II 

(14) 

Here h is the ratio of vertical magnetic field By(z) at a given point in the fringe 
field to its value B,” in the interior field. The terms denoted by the letter f are 
termed “driving terms” and are tabulated by Sagalovsky. 

We want the solution to be at least of order zero in the parameter t. The zero- 
order terms are those which do not depend on the spatial extent of the fringing 
field. The equations are solved by iteration. The driving terms Fiji contain 
products of POWUS of the first-order transfer matrix elements Rij. The second- 
order driving terms ftjk contain an expression which is of order c-l. In order to 
solve the second-order equations to order 8, we need to include terms of order c 
in the solution for the first order matrix elements Rij. 

‘The equations to be iterated to obtain the third-order matrix elements are 
similar to those used in second order. The driving terms are different and have 
also been tabulated by Sagalovsky. 

~U*ij = EUZij 

2 

&C;ij = -3ErfrzhIiz;j + ga;j 

~U~ij = tU,;j 
z 

$I”4ij = -Gr,&(hu3,j) +gdij z 

(15) 

These driving terms now contain a term of order c’. The driving terms contain 
both the first- and second-order matrix elements. Again we wish to obtain a 
solution which is of at least zero&h order in t. Now we are required to include 
terms of order E in the second-order matrix elements T~jk and of order E’ in the 
first-order matrix elements R;j. 

We see that in general the extension of the calculation to each new order in 
the transverse trajectory coordinates requires an extension to a higher order in 
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t for all the lower orders in the trajectory coordinates. We find again that the 
lower-order coefficients will depend on whether the higher orders are calculated. 
In this case, the preceding statement is true even if the fringe field representation 
is perfectly accurate from the outset of the calculation. 

Multipole Equivalents 
The final blow to our conventional notions about how mathematics can be used 

to solve physical problems comes from the consideration of multipole equivalents. 
A bending magnet fringe field can be configured so that optically it acts as a 
multipole element. If the bending magnet itself is combined function, so that it 
has multipole components in its interior field, then multipoles can also arise from 
the combined effect of the interior and fringing fields. The multipole components 
can be evaluated for a sharply-cut-off field, even when other parts of the transfer 
matrix would diverge. 

An equivalent quadrupole component is produced by a flat but rotated pole 
face. The transformation does not depend on the characteristics of the interior 
field of the magnet. The calculation is performed in a coordinate system where 
two of the coordinates are in the face of the magnet and the third is perpendicular 
to it. There is no curvature to consider. 

In second order, an equivalent sextupole component can be produced in either 
of two ways. The first and more straightforward is simply a curvature of the 
pole face. The effect of this curvature is independent of any nonuniformities of 
the interior field of the magnet. It also does not enter into the expressions for 
the first-order transformation. Its effect may be calculated by using a curvilin- 
ear coordinate system where one coordinate is along the curved pole face of the 
magnet. 

The second sextupole equivalent arises from the combined effect of the trans- 
verse gradient of the interior field and the rotation angle of the pole face. The 
gradient of the interior field is measured in the curvilinear interior coordinate 
system, where one of the coordinates is along the reference trajectory. Thus we 
have to reconcile a curvilinear coordinate system with a pole face which is not 
perpendicular to the longitudinal coordinate at its intersection with the reference 
trajectory. Here we have the beginning of a bit of complication. 

In third order, we have three ways of producing an octupole equivalent. The 
first, of course, is to give a cubic dependence to the pole face profile. Once 
again, the effect of this cubic dependence is independent of any inhomogeneities 
of the interior field of the bending magnet. It also does not affect any lower 
order. The system where one coordinate runs along the pole face now becomes 
a bit complicated, but is still analytically representable by a series expansion in 
rectilinear coordinates. 

The second and third methods arise from combinations of pole face charac- 
teristics with those of the interior field. The second contribution of an octupole 
effect is due to the combined effect of the pole-face curvature and the linear de- 
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pendence of the interior field. The third is d ue to the combined effect of the pole 
face rotation with the second transverse derivative of the interior field. 

We shall first discuss the third method of producing an octupole equivalent 
since it is similar to one of the second order case. That second order case is the 
combined effect of the pole face rotation and the linear transverse variation of the 
interior field. The interior curvilinear system plus the pole face rotation again 
gives us a hint of impending complication. 

The second contribution, mentioned above, to the effective octupole involves 
the reconciliation of two curvilinear coordinate systems. The effect of the pole 
face curvature falls off asymptotically in the interior or the magnet. However, 
there is no reason to think that the quadratic dependence of the interior field 
falls off asymptotically exterior to the magnet any more rapidly than does the 
dipole component. There is therefore no geometrical simplification for the field 
dependence. In third order the construction of a transfer map through an extended 
fringe field region inevitably points us in the direction of ray tracing through a 
detailed field map. 
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